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Abstract. We “quantify” the role of elastic as well as inelastic gg↔ ggg pQCD processes in kinetic equilibra-
tion within a pQCD inspired parton cascade. The contributions of different processes to kinetic equilibration
are manifested by the transport collision rates. We find that in a central Au+Au collision at RHIC energy
pQCD bremsstrahlung processes are much more efficient for momentum isotropization compared to elastic
scatterings. For the parameters chosen the ratio of their transport collision rates amounts to 5 : 1.

PACS. 05.60.-k; 25.75.-q; 24.10.Lx

1 Introduction

It was speculated that a strongly coupled quark–gluon
plasma (sQGP) [1] is formed in Au+Au collisions at
RHIC. This strong coupling, or strong interaction, makes
the QGP to a fluid with very small viscosity. However, how
strong the coupling must be in order to generate a quasi-
ideal fluid is an open question.
Recently we have developed an on-shell parton cascade

including elastic as well as inelastic gg↔ ggg pQCD pro-
cesses to study the issue of thermalization [2]. Although the
total cross section of the pQCD scatterings is a few mb, it
is enough to drive the system into thermal equilibrium and
also to generate a large elliptic flow v2 in noncentral Au+
Au collisions [3].
Since with elastic pQCD scatterings alone no thermal-

ization is expected to be achieved [2, 4], the inelastic gg↔
ggg processes seem to play a leading role in early ther-
malization, although for the parameters chosen in [2] the
cross section of gg→ ggg collisions is a factor of 2 smaller
than that of elastic scatterings. In order to understand this
a transport cross section,

σtr. =

∫
dθ
dσ

dθ
sin2 θ , (1)

was introduced as a pertinent quantity measuring the con-
tributions of different collision processes to kinetic equi-
libration [5], since large-angle collisions should contribute
more to momentum isotropization. The results (see Fig. 48
in [2]) showed that even due to the almost isotropic dis-
tribution of the collision angles in inelastic collisions its
transport cross section is only the same as that of elastic
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scatterings. Therefore one cannot understand why the in-
clusion of the inelastic processes brings so much to kinetic
equilibration. At first sight it seems to be an unsolvable
problem. On the other hand, however, there is no reason
to believe that momentum isotropization should relate to
the angular distribution by means of the transport cross
section and not by another formula. The concept of the
transport cross section may be more intuitively than math-
ematically correct. In this work we will find a mathemat-
ically correct way to quantify the contribution of different
processes to thermal equilibration and compare them with
each other. The core issue is the transport collision rate.
With this quantity we “quantify” the role of different col-
lision processes in kinetic equilibration.

2 Parton cascade

The buildup of the parton cascade is based on the stochas-
tic interpretation of the transition rate. This guarantees
detailed balance, which is, by contrast, difficult when using
the geometrical concept of the cross section [6], especially
for multiple scatterings like ggg→ gg. The particular fea-
ture of the numerical implementation in the parton cascade
is the subdivision of space into small cell units. In cells the
transition probabilities are evaluated for random sampling
whether a particular scattering occurs or not. The smaller
the cells, the more locally transitions will be realized.
The three-body gluonic interactions are described by

the matrix element [7]

|Mgg→ggg |
2 =
9g4

2

s2

(q2⊥+m
2
D)
2

12g2q2⊥
k2⊥ [(k⊥−q⊥)

2+m2D]

×Θ(k⊥Λg− coshy) . (2)
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The suppression of the radiation of soft gluons due to
the Landau–Pomeranchuk–Migdal (LPM) effect [2, 8, 9],
which is expressed via the step function in (2), is mod-
eled by the consideration that the time of the emission,
∼ 1
k⊥
cosh y, should be smaller than the time interval be-

tween two scatterings or equivalently the gluon mean free
path Λg. This leads to a lower cutoff for k⊥ and to a de-
crease of the total cross section.
In this work we simulate the time evolution of gluons

produced in a central Au+Au collision at RHIC energy.
The initial gluons are taken as minijets with transverse
momentum being greater than 1.4 GeV, which are pro-
duced via semi-hard nucleon–nucleon collisions. Using the
Glauber geometry the gluon number is initially about 700
per momentum rapidity. These gluons take about 60% of
the total energy entered in the collision. Choosing such
an initial condition and performing a simulation includ-
ing bremsstrahlung processes we obtain dET/dy about
640GeV at midrapidity at a final time of 5 fm/c, at which
the energy density of gluons decreases to the critical value
of 1 GeV/fm3. The value of dET/dy obtained from the
simulation is comparable with that from the experimental
measurements at RHIC.
We concentrate on the central region: 0< xT < 1.5 fm

and −0.2< η < 0.2, where η denotes the space-time rapid-
ity. Results which will be shown below are obtained in this
region by ensemble average.
The importance of including inelastic pQCD gg↔ ggg

processes to momentum isotropization is clearly demon-
strated in Fig. 1, where the time evolution of the aver-
aged momentum anisotropy, 〈p2Z/E

2〉, is depicted. pZ and
E are, respectively, longitudinal momentum and energy
of a gluon. The average is computed over all gluons in
the central region. As comparison we have also performed
a simulation with pure elastic processes starting with the
same initial conditions. From Fig. 1 we see that while the
gluon system is still far from kinetic equilibrium in the
simulation with pure elastic scatterings (dashed curve),
the momentum anisotropy relaxes to the value at equilib-
rium, 1/3, in the simulation including inelastic processes
(solid curve).
We fit the time evolution of the momentum anisotropy

using the standard relaxation formula

F (t) =
1

3
+

(〈
p2Z
E2

〉
(t0)−

1

3

)
exp

(
−
t− t0
θ(t0)

)
. (3)

For simplicity we label now the momentum anisotropy by
Q := 〈p2Z/E

2〉. F (t) is only equal toQ(t) at t= t0. For fixed
t0 the relaxation time θ is a constant with respect to t. Such
a fit can be done at every time point t0. The two thin dotted
curves in Fig. 1 are fits with θ = 0.9 fm/c at t0 = 0.3 fm/c
and θ= 2.4 fm/c at t0 = 1.2 fm/c. We find that an isotropic
state is achieved at about 1.0 fm/c in the simulation includ-
ing inelastic scattering processes. Moreover, we see that
the relaxation time θ is generally time dependent. The two
values of θ in the fits are obtained by guessing. Actually
θ can be calculated exactly, since in order to make a local
fit one should request that the time derivative of F (t) and

Fig. 1. Momentum anisotropy

Q(t) are equal at t= t0. This leads to

Q̇(t)
∣∣∣
t=t0
= Ḟ (t)

∣∣∣
t=t0
=−(Q(t0)−Qeq.)

1

θ(t0)
, (4)

with Qeq. = 1/3. Changing t0 to t gives

Q̇(t)

Qeq.−Q(t)
=
1

θ(t)
. (5)

Equation (5) expresses the relaxation rate 1/θ of the mo-
mentum anisotropy. In the next section we analytically
separate the relaxation rate into different terms corres-
ponding particle diffusion and various scattering processes,
and we define the transport collision rate which quanti-
fies the contribution of a certain process to momentum
isotropization.

3 Transport collision rate

For evaluating the momentum anisotropy at a certain
space point one has to go to its co-moving frame, in which
we have

Q(t) =

〈
p2Z
E2

〉∣∣∣∣
x=0

=
1

n

∫
d3p

(2π)3
p2Z
E2
f(p, x= 0, t) . (6)

Taking the derivative in time gives

Q̇(t) =
1

n

∫
d3p

(2π)3
p2Z
E2
∂f

∂t
−Q(t)

1

n

∫
d3p

(2π)3
∂f

∂t
. (7)

We replace ∂f/∂t by

∂f

∂t
=−
p

E
∇f +C22+C23+C32 , (8)

according to the Boltzmann equation.C22,C23 andC32 de-
note, respectively, the collision term of gg→ gg, gg→ ggg
and ggg→ gg process. It is obvious that the contribution
of different processes to Q̇ is additive. Except for a static
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system the diffusion term in (8) generally has contribution
to Q̇(t), which we denote byWdiff.. C22 has no contribution
to the second integral in (7) due to particle number con-
servation. The same is also for the sum of C23 and C32 at
chemical equilibrium. We rewrite (7) to

Q̇(t) =Wdiff.(t)+W22(t)+W23(t)+W32(t) , (9)

whereW22,W23 andW32 correspond to the gg→ gg, gg→
ggg and ggg→ gg process, respectively. According to (5)
we then obtain

1

θ(t)
=Rtr.diff(t)+R

tr.
22(t)+R

tr.
23(t)+R

tr.
32(t) , (10)

where we define

Rtr.i (t) :=
Wi(t)

Qeq.−Q(t)
. (11)

We see that the relaxation rate of kinetic equilibration,
1/θ, is separated into additive parts corresponding to par-
ticle diffusion and collision processes. Rtr.22 , R

tr.
23 and R

tr.
32

stand for the transport collision rates of the respective in-
teractions and quantify their contributions to kinetic equi-
libration. The extension to more than three-body processes
is straightforward, because the collision term is additive.
We note that the definition ofRtr.i in (11) depends on which
momentum anisotropy we are looking at. If one defines
〈|pZ |/E〉 as the momentum anisotropy for instance, the
form Rtr.i will change accordingly.
Putting the explicit expression of the collision term via

the matrix element of transition into (8), we obtain explicit
expressions forWi, which are summarized in the following:

W22(t) = n 〈vrelσ̃22〉2−n

〈
vrel
p21Z
E21
σ22

〉
2

, (12)

W23(t) =
3

2
n〈vrelσ̃23〉2−n

〈
vrel
p21Z
E21
σ23

〉
2

−
1

2
Q(t)n〈vrelσ23〉2 , (13)

W32(t) =
1

3
n2

〈
Ĩ32

8E1E2E3

〉

3

−
1

2
n2
〈
p21Z
E21

I32

8E1E2E3

〉
3

+
1

6
Q(t)n2

〈
I32

8E1E2E3

〉
3

, (14)

where

σ̃22 :=
1

2s

1

2!

∫
dΓ ′1dΓ

′
2

p′21Z
E′21
|M12→1′2′ |

2

× (2π)4δ(4)(p1+p2−p
′
1−p

′
2) , (15)

σ̃23 :=
1

2s

1

3!

∫
dΓ ′1dΓ

′
2dΓ

′
3

p′21Z
E′21
|M12→1′2′3′ |

2

× (2π)4δ(4)(p1+p2−p
′
1−p

′
2−p

′
3) , (16)

I32 :=
1

2!

∫
dΓ ′1dΓ

′
2|M123→1′2′ |

2

× (2π)4δ(4)(p1+p2+p3−p
′
1−p

′
2) , (17)

Ĩ32 :=
1

2!

∫
dΓ ′1dΓ

′
2

p′21Z
E′21
|M123→1′2′ |

2

× (2π)4δ(4)(p1+p2+p3−p
′
1−p

′
2) (18)

with dΓi = d
3pi/(2π)

32Ei for short. σ22 and σ23 denote
the standard pQCD cross section of the gg→ gg and gg→
ggg process, respectively. vrel = s/2E1E2 is the relative
velocity. 〈〉2 and 〈〉3 symbolize, respectively, an ensem-
ble average over pairs and triplets of incoming particles.
In the parton cascade simulations f(p, x, t) ≈

∑
i δ
(3)(p−

pi)δ
(3)(x−xi(t)), and we can approximately evaluate the

averages 〈〉2 and 〈〉3 in local cells which have small volume,
but a sufficient number of (test) particles to achieve high
statistics.
The expression of Wis in (12), (13) and (14) indi-

cates the difference of the gain and loss in the momentum
isotropization within one collision. The influence of the
distribution of the collision angle onmomentum isotropiza-
tion is implicitly contained. However, the expression of
the transport collision rate Rtr.i is clearly different from
n〈vrelσtr.i 〉2 by the formula (1). (The index i denotes 22 or
23.) Only in the special case that all particles are moving
along the Z-axis (irrespective of± sign) and have the same
energy E,

f(p, x, t)∝ δ(pX)δ(pY)δ(pZ −E)+ δ(pX)δ(pY)δ(pZ +E) ,
(19)

the lab frame is the CM system for every colliding pair. In
this case p′21Z/E

′2
1 = cos

2 θ∗ and

Rtr.i ∼ n〈vrelσ
tr.
i 〉2 . (20)

This result does not depend on the chosen direction of ini-
tial momentum. The only necessary conditions are that all
particles move along the same direction and have the same
energy. If we define the momentum anisotropy as 〈|pZ |/E〉,
Rtr.i maintains its form (20), but σ

tr.
i is changed to

σtr.i =

∫
dθ∗
dσi
dθ∗
(1− cosθ∗) . (21)

Figure 2 shows the transport rates Rtr.i obtained from
simulations employing the parton cascade. The solid,
dashed and dash-dotted curves depict, respectively, the
transport collision rates Rtr.22 , R

tr.
23 and R

tr.
32 calculated in

the simulation with both elastic and inelastic collisions.We
realize the dominance of inelastic collisions in kinetic equi-
libration by computing the ratio (Rtr.23 +R

tr.
32)/R

tr.
22 ≈ 5. The

thin dotted curve in Fig. 2 presents Rtr.22 in the simulation
with pure elastic processes. When comparing this with the
solid curve one cannot realize much difference.
The contribution of particle diffusion to kinetic equi-

libration, Rtr.diff., calculated in the simulation with both
elastic and inelastic processes, is depicted in Fig. 2 by the
symbols multiplied by −1. Rtr.diff., which is expressed by

Rtr.diff.(t) =
1

Qeq.−Q(t)

1

n

∫
d3p

(2π)3
p

E
·∇f

(
Q(t)−

p2Z
E2

)
,

(22)
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Fig. 2. Transport rate

is not computed at a certain time as performed for the
transport collision rates, because of the inaccurate extrac-
tion of∇f . The diffusion rate is obtained by explicit count-
ing of the particles which come in as well as go out of
the central region within a time interval. Although the ex-
traction of Rtr.diff. has a much larger statistical fluctuation,
the sum Rtr.diff.+R

tr.
22 +R

tr.
23 +R

tr.
32 gives a value consistent

with the relaxation rate 1/θ(t) as one would calculate via
Q̇(t)/(Qeq.−Q(t)) directly from Fig. 1.
We also see that Rtr.diff. has a negative contribution to

momentum isotropization and is quite large. We did not
plot −Rtr.diff. from the simulation with pure elastic pro-
cesses. It is slightly smaller than Rtr.22 (thin dotted curve).
We see that there is a big difference in the diffusion rate in
both simulations. To understand this we assume Bjorken’s
space-time picture of central ultrarelativistic heavy-ion
collisions [10] and use the relation derived by Baym [11]:

p

E
·∇f ≈

pZ

E

∂f

∂Z
=−
pZ

t

∂f

∂pZ
. (23)

Inserting (23) into (22) and calculating partial integrals
give

Rtr.diff.(t)≈
−2

(Qeq.−Q(t))t

(
Q(t)−

〈
p4Z
E4

〉
(t)

)
. (24)

The formula confirms that Rtr.diff. is always negative. Using
the approximation 〈p4Z/E

4〉 ≈Q2 one can also realize that
the larger is Q, the larger−Rtr.diff. is.
We have seen that only in an extreme case the transport

collision rate can be reduced to a formula directly propor-
tional to the transport cross section: Rtr. ∼ n〈vrelσtr.〉2. It
is interesting to know how the calculated transport col-
lision rates differ from n〈vrelσtr.〉2. Such a comparison is
necessary for understanding why the concept of transport
cross section cannot explain the strong effect when in-
cluding inelastic scattering processes. In Fig. 3 we depict
n〈vrelσtr.〉2 calculated from the cascade simulations. At
first we look at the results in the simulation with both elas-
tic and inelastic collisions and calculate the inelastic to

Fig. 3. “Transport collision rate” in the concept of transport
cross section

elastic ratio (dashed versus solid curve). It is almost a con-
stant around 1.7 in time, which indicates the dominance
of the gg→ ggg scattering processes in kinetic equilibra-
tion. Comparing Fig. 3 to Fig. 2 we realize that the results
concerning elastic scatterings have no strong difference. On
the contrary, Rtr.23 is a factor of 2.5 larger than n〈vrelσ

tr.
23 〉2.

The pQCD gg→ ggg process is much more efficient for ki-
netic equilibration than one would expect via the transport
cross section.

4 Bremsstrahlung process
and the LPM effect

It is intuitively clear that a 2→ 3 process will bring one
more particle towards isotropy than a 2→ 2 process. The
kinematic factor should be 3/2 and appears in (13) when
assuming the decompositions

〈
vrel
p21Z
E21
σ

〉
2

≈Q(t)〈vrelσ〉2 . (25)

Analogously we compareW23 to W32. The sum of the last
term in (13) and (14) comes from the second term in (7)
with C23+C32 instead of ∂f/∂t and should be zero at
chemical equilibrium: we obtain

n〈vrelσ23〉2 =
1

3
n2
〈

I32

8E1E2E3

〉
3

, (26)

or equivalently R23 =
2
3R32. Assuming further the decom-

position

〈
p21Z
E21

I32

8E1E2E3

〉
3

≈Q(t)

〈
I32

8E1E2E3

〉
3

, (27)

we have

W23(t)≈
3

2
(n〈vrelσ̃23〉2−Q(t)n〈vrelσ23〉2) ,
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W32(t)≈
1

3
n2

〈
Ĩ32

8E1E2E3

〉

3

−Q(t)
1

3
n2
〈

I32

8E1E2E3

〉
3

.

These approximate expansions together with (26) lead
to W23 ≈

3
2W32 and R

tr.
23 ≈

3
2R
tr.
32 at chemical equilibrium.

Alone due to the kinematic reason a 2→ 3 process is 50%
more efficient in kinetic equilibration than a 2→ 2 or a 3→
2 process, when σ22 = σ23 and σ̃22 = σ̃23.
The LPM effect stems from the interference of the ra-

diated gluons (originally photons in the QED medium) by
multiple scattering of a parton though a medium. This
is a coherent effect which leads to suppression of radia-
tion of gluons with certain modes (w,k). w and k denote
energy and momentum of a gluon respectively. Heuristi-
cally there is no suppression for gluons with a formation
time τ = w/k2T smaller than the mean free path. This is
called the Bethe–Heitler limit, where the gluon radiations
induced at a different space-time point in the course of the
propagation of a parton can be considered as independent
events. These events within the Bethe–Heitler regime have
been included in the parton cascade calculations. Radia-
tion of other gluon modes with coherent suppression com-
pletely dropped out, which is indicated by the Θ-function
in the matrix element (2). The inclusion of those radiations
would speed up thermalization. How to implement the co-
herent effect into a transport model solving the Boltzmann
equation is a challenge.
The Θ-function in the matrix element (2) results in

a cut-off for kT, the transverse momentum of a radiated
gluon, kT > 1/Λg, where Λg is the mean free path of
a gluon. A higher value of the cut-off will decrease the
total cross section of a gg→ ggg collision on the one hand
and make the collision angles large on the other hand. The
latter leads to a large efficiency for momentum isotropiza-
tion. Varying the cut-off downwards to a smaller value one
would enter into the LPM suppressed regime. Although
parton cascade calculations set up with smaller cut-offs
cannot completely take the LPM effect into account, one
can roughly estimate the contribution of the coherent effect
to kinetic equilibration. Such calculations will be done in
a subsequent paper.

5 Conclusion

Employing the parton cascade we have investigated the im-
portance of including pQCD bremsstrahlung processes to
thermalization. The question addressed is how to under-
stand the observed fast equilibration in theoretical terms.
The special emphasis is put on expressing the transport
collision rate in a correct manner. The concept of transport
cross section only gives a qualitative understanding of the
dominant contribution of large-angle scatterings to mo-
mentum isotropization but not a correct way to manifest
the various contributions. In case we are studying parton
thermalization in a central Au+Au collision at RHIC en-
ergy the old concept of the transport cross sections would
strongly underestimate the contribution of gg→ ggg to ki-
netic equilibration. The correct results showed that the
inclusion of pQCD bremsstrahlung processes increases the
efficiency by a factor of 5 for thermalization. The large effi-
ciency stems partly from the increase of particle number in
the final state of gg→ ggg collisions, but mainly from the
almost isotropic angular distribution in bremsstrahlung
processes due to the effective implementation of LPM sup-
pression. The detailed understanding of the latter has to be
developed in future investigations.
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